

Synthesis and effects of Melphalan-Benzylguanidine-Hybrids on neuroblastoma and non-neuroblastoma cells

Christina Parpoulas¹, Anna Poggel¹, Julia Kopp², Daniel B. Werz², Reinhard Brückner², Gernot Bruchelt¹, Rupert Handgretinger¹, Johannes H. Schulte¹, Peter Lang¹

¹ Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tuebingen, Germany

² Department of Organic Chemistry, University of Freiburg, Freiburg, Germany

Background

Neuroblastoma often requires aggressive treatment strategies, including chemotherapy and radiotherapy. Melphalan, containing an alkylating group conjugated to phenylalanine, is a key chemotherapeutic used prior to stem cell transplantation, although its uptake into cells occurs non-specifically via amino acid transporters. In contrast, *meta*-iodobenzylguanidine (mIBG), as well as noradrenaline, is more selectively taken up by neuroblastoma cells through the noradrenaline transporter (NAT) and is widely used for both diagnostic (¹²³I/[¹²⁴I]-mIBG) and therapeutic (¹³¹I-mIBG) applications.

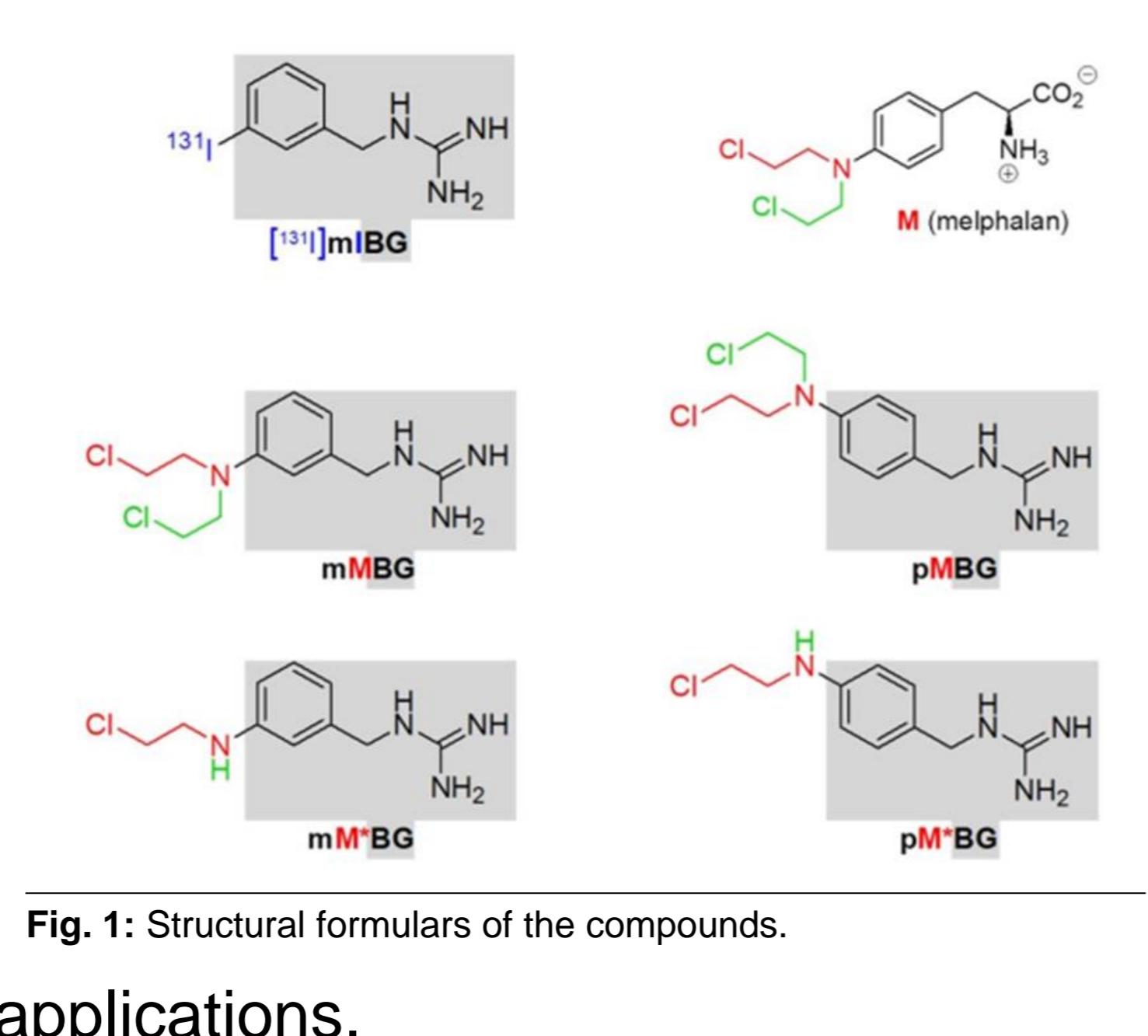


Fig. 1: Structural formulas of the compounds.

To enhance the selectivity and efficacy of chemotherapy in neuroblastoma, this study focuses on the design of hybrid molecules that combine the tumor-targeting benzylguanidine structure of mIBG with the alkylating moiety of melphalan. By leveraging NAT-mediated uptake, these novel compounds aim to improve drug delivery specifically to neuroblastoma cells while reducing off-target toxicity.

Materials & Methods

Human Neuroblastoma Cell Lines: SK-N-BE(2), SH-SY5Y, IMR-32, LS.

Human Non-Neuroblastoma Cells: SK-HEP-1 (liver adenocarcinoma), SNU-475 (liver hepatocellular carcinoma), CAKI-1 (kidney clear cell carcinoma), MRC-5 (normal lung fibroblasts), HFF (normal human foreskin fibroblasts), PBMCs (human primary peripheral blood mononuclear cells).

MTS assays: Substances were tested in the concentration range from 0.01 μ M to 100 μ M using the CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) from Promega (Walldorf, Germany) following the manufacturers instructions. IC₅₀s were calculated using GraphPad Prism 10.1.1 non-linear fit function ([inhibitor] vs. normalized response).

xCELLigence RTCA assays: Agilent (Walldbronn, Germany) xCELLigence Real-Time Cell Analysis (RTCA) technology was used to track proliferation using 0.5 μ M compound for 72 h after 24 h untreated cell growth. Cell indices were normalized to last measured timepoint before treatment.

[³H]NA uptake assays: [³H]-Noradrenaline ([³H]NA, 100 nM f.c.) uptake was measured after 15 min incubation at 37 °C in competition to 100x excess (10 μ M f.c.) of the respective compound. The percentage uptake was calculated relative to the PBS control.

Results

[³H]NA Uptake (Fig. 2)

- Competitive uptake assays with [³H]NA revealed that both mIBG and pM*BG significantly reduce [³H]NA uptake in the neuroblastoma cell lines SK-N-BE, SH-SY5Y, and IMR-32, while uptake inhibition was markedly lower in most non-neuroblastoma cell lines.
- Notably, LS cells appeared as an exception among the neuroblastoma lines, potentially due to reduced NAT expression levels.

xCELLigence RTCA assays (Fig. 3 right)

- At a compound concentration of 0.5 μ M, the proliferation of non-neuroblastoma cells was less affected over time compared to neuroblastoma cell lines.
- LS cells displayed an atypical proliferation pattern under treatment compared to other neuroblastoma cells.
- Interestingly, although CAKI-1 cells are of non-neuroblastoma origin, they showed sensitivity to the hybrids pMBG and mM BG at 0.5 μ M.

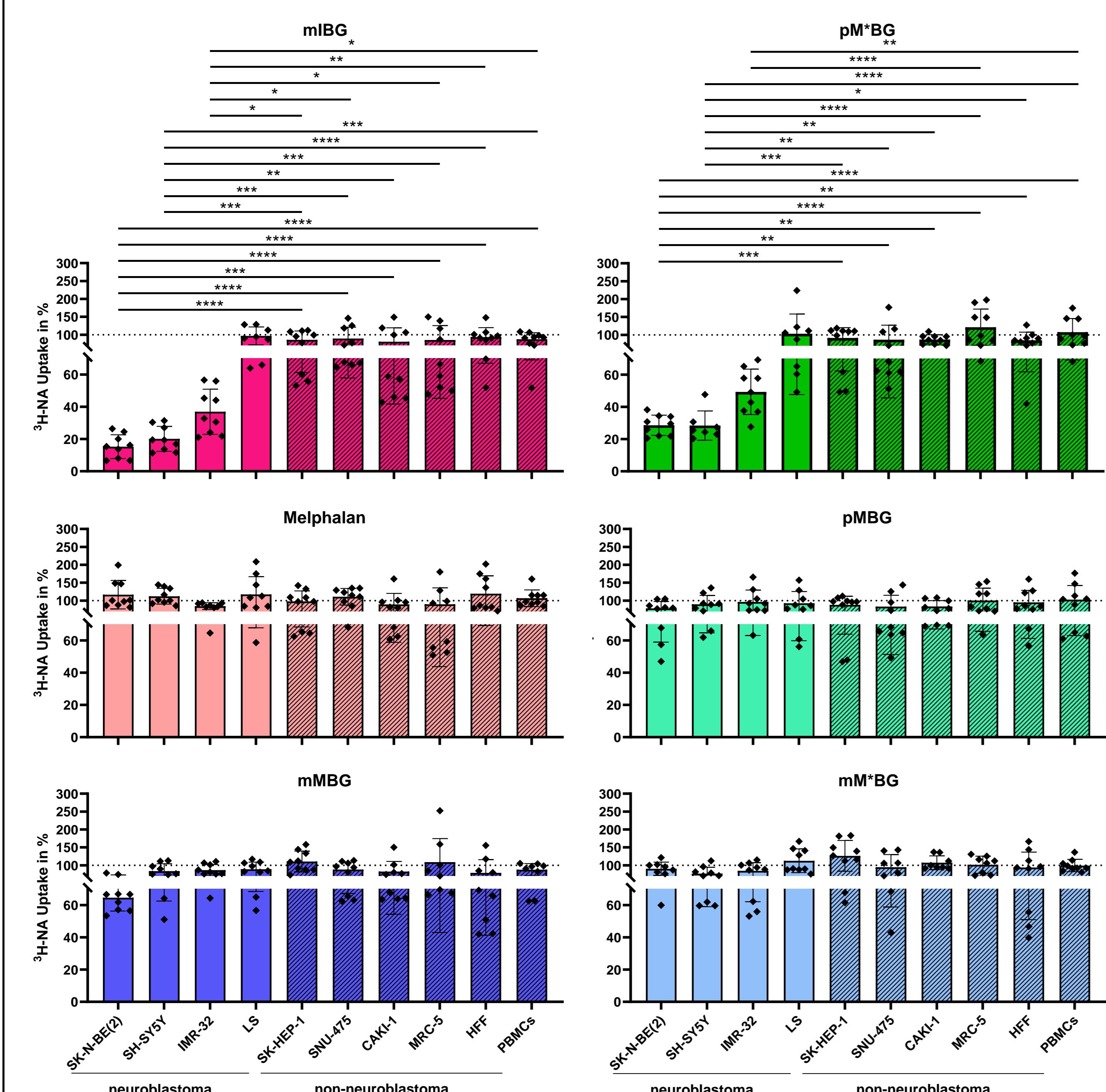


Fig. 2: Uptake of [³H]NA within 15min at 37 °C into cells in a PBS control, designated as 100 % uptake (dotted line), and in the presence of 100x excess of the stated compound. Mean value \pm SD based on 3 independent experiments, each of which was performed in triplicates. Statistical significance was estimated using a 2way ANOVA and a Tukey's multiple comparisons test. ns: p \geq 0.05 (not shown), *: p = 0.01 to 0.05, **: p = 0.001 to 0.01, ***: p = 0.0001 to 0.001, ****: p \leq 0.0001.

MTS assays (Fig. 3 left)

- The MBG hybrids mM BG and pMBG, containing two alkylating groups like Melphalan (Fig.1) exhibit cytotoxic effects comparable to melphalan in neuroblastoma cells.
- The IC₅₀ values for non-neuroblastoma cells were consistently higher than those observed for the neuroblastoma cell lines SK-N-BE, SH-SY5Y, and IMR-32, indicating greater selectivity towards neuroblastoma cells. LS cells again deviated from this trend, which may be attributed to lower NAT expression.
- Surprisingly, the hybrids mM*BG and pM*BG, containing only one alkylating group, demonstrate a stronger cytotoxic effect than melphalan.

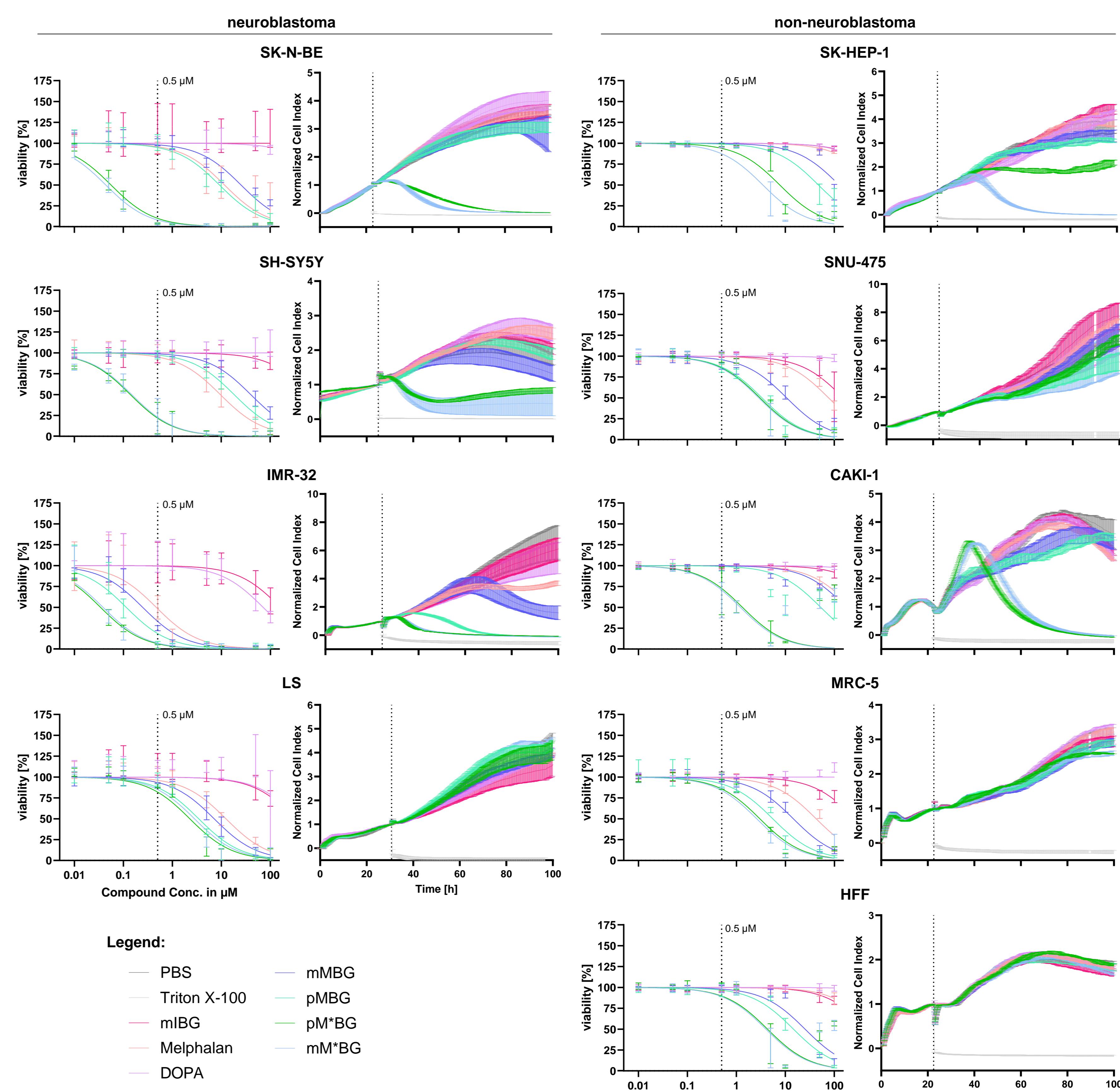


Fig. 3: Left: MTS viability assays after incubation with the stated compound for 72 h at 37 °C. Mean value \pm SD based on 3 independent experiments, each of which was performed in triplicates. Dotted line indicates 0.5 μ M. Right: Real-time proliferation monitoring over 72 h in the presence of 0.5 μ M of the stated compound after 24h cell seeding. Cell indices were normalized to last measured time point before treatment (dotted line). Triton X-100 (1%) was used as positive control, PBS as negative control. Experiments were performed in triplicates. Mean value \pm SD based on triplicates.

Conclusions and Outlook

This study demonstrates that mIBG and the MBG hybrid pM*BG are specifically taken up by neuroblastoma cells via NAT. Among the tested compounds, pM*BG closely mirrors the uptake behavior of mIBG, highlighting its potential as a neuroblastoma-targeted therapeutic agent. In cytotoxicity assays, the MBG hybrids mM BG and pMBG showed comparable effects to melphalan, while mM*BG and pM*BG exhibited even greater cytotoxicity against neuroblastoma cells, indicating a selective toxicity profile favoring neuroblastoma cells. Future studies will focus on *in vivo* evaluation of the pharmacokinetics, biodistribution, and therapeutic efficacy.

We would like to thank the sponsors of the project:

DFG Deutsche
Forschungsgemeinschaft
German Research Foundation

HA2386/2-1, BR881/9-1

Gesellschaft für
KinderKrebsForschung
Mehr Forschung. Mehr Leben.

Reference

Bruchelt G., Klose Ch., Lischka M., Brandes M., Handgretinger R., Brückner R.: Hybrid molecules of Benzylguanidine and the alkylating Group of Melphalan: Synthesis and Effects on Neuroblastoma Cells. J.Clin.Med. 2023, 12,4469. <https://doi.org/10.3390/jcm12134469>